active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
ACTIVE(nats(X)) → NATS(active(X))
ACTIVE(nats(N)) → S(N)
S(mark(X)) → S(X)
PROPER(nats(X)) → PROPER(X)
ACTIVE(zprimes) → S(0)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, X2, active(X3))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, active(X2), X3)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
PROPER(filter(X1, X2, X3)) → PROPER(X3)
ACTIVE(s(X)) → S(active(X))
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
ACTIVE(filter(X1, X2, X3)) → FILTER(active(X1), X2, X3)
PROPER(s(X)) → PROPER(X)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(zprimes) → S(s(0))
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
ACTIVE(zprimes) → NATS(s(s(0)))
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
PROPER(sieve(X)) → SIEVE(proper(X))
NATS(mark(X)) → NATS(X)
PROPER(s(X)) → S(proper(X))
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
ACTIVE(nats(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → ACTIVE(X)
PROPER(filter(X1, X2, X3)) → FILTER(proper(X1), proper(X2), proper(X3))
NATS(ok(X)) → NATS(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(nats(N)) → NATS(s(N))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(nats(X)) → NATS(proper(X))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
ACTIVE(nats(X)) → NATS(active(X))
ACTIVE(nats(N)) → S(N)
S(mark(X)) → S(X)
PROPER(nats(X)) → PROPER(X)
ACTIVE(zprimes) → S(0)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, X2, active(X3))
TOP(ok(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, active(X2), X3)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
PROPER(filter(X1, X2, X3)) → PROPER(X3)
ACTIVE(s(X)) → S(active(X))
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
ACTIVE(filter(X1, X2, X3)) → FILTER(active(X1), X2, X3)
PROPER(s(X)) → PROPER(X)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(zprimes) → S(s(0))
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(sieve(X)) → SIEVE(active(X))
TOP(mark(X)) → PROPER(X)
ACTIVE(zprimes) → NATS(s(s(0)))
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
PROPER(sieve(X)) → SIEVE(proper(X))
NATS(mark(X)) → NATS(X)
PROPER(s(X)) → S(proper(X))
PROPER(sieve(X)) → PROPER(X)
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
ACTIVE(nats(X)) → ACTIVE(X)
ACTIVE(sieve(X)) → ACTIVE(X)
PROPER(filter(X1, X2, X3)) → FILTER(proper(X1), proper(X2), proper(X3))
NATS(ok(X)) → NATS(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(nats(N)) → NATS(s(N))
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(nats(X)) → NATS(proper(X))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
ACTIVE(nats(X)) → NATS(active(X))
ACTIVE(nats(N)) → S(N)
S(mark(X)) → S(X)
PROPER(nats(X)) → PROPER(X)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(zprimes) → S(0)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
TOP(mark(X)) → TOP(proper(X))
PROPER(cons(X1, X2)) → PROPER(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, X2, active(X3))
ACTIVE(filter(X1, X2, X3)) → FILTER(X1, active(X2), X3)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
PROPER(filter(X1, X2, X3)) → PROPER(X3)
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
ACTIVE(s(X)) → S(active(X))
PROPER(s(X)) → PROPER(X)
ACTIVE(filter(X1, X2, X3)) → FILTER(active(X1), X2, X3)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(zprimes) → S(s(0))
ACTIVE(sieve(X)) → SIEVE(active(X))
ACTIVE(zprimes) → NATS(s(s(0)))
TOP(mark(X)) → PROPER(X)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
PROPER(sieve(X)) → SIEVE(proper(X))
NATS(mark(X)) → NATS(X)
PROPER(s(X)) → S(proper(X))
PROPER(sieve(X)) → PROPER(X)
ACTIVE(s(X)) → ACTIVE(X)
S(ok(X)) → S(X)
SIEVE(ok(X)) → SIEVE(X)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(nats(X)) → ACTIVE(X)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
ACTIVE(sieve(X)) → ACTIVE(X)
PROPER(filter(X1, X2, X3)) → FILTER(proper(X1), proper(X2), proper(X3))
NATS(ok(X)) → NATS(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
ACTIVE(nats(N)) → NATS(s(N))
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(nats(X)) → NATS(proper(X))
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
NATS(ok(X)) → NATS(X)
NATS(mark(X)) → NATS(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
NATS(mark(X)) → NATS(X)
Used ordering: Combined order from the following AFS and order.
NATS(ok(X)) → NATS(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
NATS(ok(X)) → NATS(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
NATS(ok(X)) → NATS(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SIEVE(mark(X)) → SIEVE(X)
SIEVE(ok(X)) → SIEVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SIEVE(ok(X)) → SIEVE(X)
Used ordering: Combined order from the following AFS and order.
SIEVE(mark(X)) → SIEVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SIEVE(mark(X)) → SIEVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SIEVE(mark(X)) → SIEVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
S(mark(X)) → S(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
S(mark(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(ok(X)) → S(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
S(ok(X)) → S(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
S(ok(X)) → S(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
Used ordering: Combined order from the following AFS and order.
CONS(mark(X1), X2) → CONS(X1, X2)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
CONS(mark(X1), X2) → CONS(X1, X2)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(ok(X1), ok(X2), ok(X3)) → FILTER(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
Used ordering: Combined order from the following AFS and order.
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(filter(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
PROPER(sieve(X)) → PROPER(X)
PROPER(nats(X)) → PROPER(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(filter(X1, X2, X3)) → PROPER(X3)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(filter(X1, X2, X3)) → PROPER(X1)
PROPER(filter(X1, X2, X3)) → PROPER(X2)
Used ordering: Combined order from the following AFS and order.
PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(nats(X)) → PROPER(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
PROPER(nats(X)) → PROPER(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(nats(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(s(X)) → PROPER(X)
PROPER(sieve(X)) → PROPER(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(sieve(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(s(X)) → PROPER(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
PROPER(s(X)) → PROPER(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PROPER(s(X)) → PROPER(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(nats(X)) → ACTIVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X3)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(filter(X1, X2, X3)) → ACTIVE(X2)
Used ordering: Combined order from the following AFS and order.
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(nats(X)) → ACTIVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(nats(X)) → ACTIVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(nats(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(s(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
Used ordering: Combined order from the following AFS and order.
ACTIVE(sieve(X)) → ACTIVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
ACTIVE(sieve(X)) → ACTIVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(sieve(X)) → ACTIVE(X)
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
active(filter(X1, X2, X3)) → filter(active(X1), X2, X3)
active(filter(X1, X2, X3)) → filter(X1, active(X2), X3)
active(filter(X1, X2, X3)) → filter(X1, X2, active(X3))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(sieve(X)) → sieve(active(X))
active(nats(X)) → nats(active(X))
filter(mark(X1), X2, X3) → mark(filter(X1, X2, X3))
filter(X1, mark(X2), X3) → mark(filter(X1, X2, X3))
filter(X1, X2, mark(X3)) → mark(filter(X1, X2, X3))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
sieve(mark(X)) → mark(sieve(X))
nats(mark(X)) → mark(nats(X))
proper(filter(X1, X2, X3)) → filter(proper(X1), proper(X2), proper(X3))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sieve(X)) → sieve(proper(X))
proper(nats(X)) → nats(proper(X))
proper(zprimes) → ok(zprimes)
filter(ok(X1), ok(X2), ok(X3)) → ok(filter(X1, X2, X3))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
sieve(ok(X)) → ok(sieve(X))
nats(ok(X)) → ok(nats(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))